Erratum

D. Bernacchi · T. Beck-Bunn · D. Emmatty · Y. Eshed S. Inai · J. Lopez · V. Petiard · H. Sayama · J. Uhlig D. Zamir · S. Tanksley

Advanced back-cross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from *Lycopersicon hirsutum* and *L. pimpinellifolium*

Theor Appl Genet (1998) 97:170-180

Due to a technical error, the tables 1–6 were unfortunately not included in the above-mentioned article.

We apologize for this error and print the missing tables.

Received: 27 October 1997 / Accepted: 25 November 1997

Abstract Improved-processing tomato lines were produced by the molecular breeding strategy of advanced backcross QTL (AB-QTL) analysis. These near-

D. Bernacchi · S. Tanksley (⊠) Department of Plant Breeding and Biometry, 252 Emerson Hall, Cornell University, Ithaca, NY 14853-1902, USA Fax: +1 607 255 6683 E-mail: SDT4@Cornell.edu

T. Beck-Bunn · J. Uhlig Seminis Vegetable Seeds, 37437 State Highway 16, Woodland, CA 95695, USA

D. Emmatty Heinz U.S.A., Agricultural Research Department, P.O. Box 57, Stockton, CA 95201-3057, USA

Y. Eshed • D. Zamir Department of Field Crops, The Faculty of Agriculture, Hebrew University of Jerusalem, Kennedy Lee Building, Room 222, Box 12, Rehovot 76–100, Israel

S. Inai • H. Sayama Nippon del Monte Corp., Research and Development, 3748 Shimizu-cho, Numata, Gumma 378, Japan

J. Lopez Nestlé Research and Development Center, Apartado 435, E-06080, Badajoz, Spain

V. Petiard Centre Recherche Nestlé, 101 Avenue Gustave Eiffel, 37390 Notre Dame D'OE, Tours, France isogenic lines (NILs) contained unique introgressions of wild alleles originating from two donor wild species, Lycopersicon hirsutum (LA1777) and L. pimpinellifolium (LA1589). Wild alleles targeted for trait improvement were selected on the basis of previously published replicated QTL data obtained from advanced backcross populations for a battery of important agronomic traits. Twenty three NILs were developed for 15 genomic regions which were predicted to contain 25 quantitative trait factors for the improvement of seven agronomic traits: total yield, red yield, soluble solids, brix × red yield, viscosity, fruit color, and fruit firmness. An evaluation of the agronomic performance of the NILs in five locations worldwide revealed that 22 out of the 25 (88%) quantitative factors showed the phenotypic improvement predicted by QTL analysis of the BC₃ populations, as NILs in at least one location. Perlocation gains over the elite control ranged from 9% to 59% for brix \times red yield; 14% to 33% for fruit color; 17% to 34% for fruit firmness; 6% to 22% for solublesolids content; 7% to 22% for viscosity; 15% to 48% for red yield, and 20% to 28% for total yield. The inheritance of QTLs, the implementation of the AB-QTL methodology for characterizing unadapted germplasm and the applicability of this method to other crops are discussed.

Key words Molecular breeding • Germplasm • Quantitative traits

Communicated by G. Wenzel

Table 1 Targeted quantitative factors from L. hirsutum LA1777 (H) and L. pimpinellifolium LA1589 (PM) and corresponding NILs. Targeted QTL are in lower case italics and targeted quantitative factors identified at subthreshold significance are in capitals (trait affected and marker locus) (Bernacchi et al. 1997b; Tanksley et al. 1996). Chr = chromosome. NIL = near isogenic line. SSC = soluble solids; BOS = viscosity Bostwick; YDT = total yield;YDR = red yield; BYR = brixred yield; FC = fruit color and FIR = fruit firmness. See Fig. 1for cM lengths of introgressed fragments

Targeted factor	Chr	Donor	NIL
SSC-TG260/CT267	1	Н	TA523
	1	Н	TA1257
ssc3.2/BOS-TG417	3	Н	TA1276
vdt4.1/YDR-CD59/BYR-CD59	4	Н	TA1133
fc4.2/bvr4.1/BOS-CT50/SSC-TG163/YDR-TG163	4	Н	TA517
,,.,.,,	4	Н	TA1284
BYR-TG574/FIR-TG574/YDR-TG574	4	Н	TA1138
fc5.1/BOS-TG441	5	Н	TA1116
1	5	Н	TA1292
	5	Н	TA1291
	5	Н	TA1293
ssc5.1/FC-TG60/CT138	5	Н	TA1118
, ,	5	Н	TA1117
	5	Н	TA1297
fc11.2	11	Н	TA1347
fir3.1	3	PM	TA515
byr3.1/ssc3.1	3	PM	TA524
	3	PM	94T872-13
	3	PM	94T868-24
SSC-CT101	5	PM	TA514
vis9.1	9	PM	94T873-30
	9	PM	TA534
FC-TG393	11	PM	TA516

Table 2 Number of QTL/factors for which the corresponding NILs showed the expected phenotypic effect in at least one location. SSC = soluble solids; BOS = viscosity Bostwick; YDT = total yield; YDR = red yield; BYR = brix red yield; FC = fruit color; FIR = fruit firmness

	SSC	BOS	YDT	YDR	BYR	FC	FIR
Total # QTL/factors tested as NILs	6	4	1	3	4	5	2
# showing expected effect at $P \le 0.1$	4	4	1	2	4	5	2
# showing expected effect at $P \le 0.05$	4	3	0	1	3	4	2

Table 4 QTL/factors classified
according to significance of BC3
detection and significance of NIL
best representing the predicted
effects. $P = significance level of$
single point analysis (QTL) and
of linear contrast between NIL
and control (NIL Δ %). Names
of QTL/factors are described in
Table 1

Significance of NIL	$\Delta\%$			
Significance of QTL/factor detection in BC ₃	ns	$0.1 \le P < 0.01$	$0.01 \le P < 0.001$	$0.001 \le P < 0.0001$
$0.1 \le P < 0.01$	ssc5.1	SSC-TG260/CT267 ydt4.1 YDR-CD59 BYR-CD59 BOS-CT50 FC-TG60/CT138 BYR-TG574	SSC-CT101	BOS-TG441
$0.01 \le P < 0.001$	YDR-TG574	YDR-TG163 FIR-TG574 fc5.1	BOS-417 FC-TG393 <i>byr3.1</i>	SSC-TG163
$0.001 \le P < 0.0001$	ssc3.1	fc4.2 vis9.1	ssc3.2 byr4.1 fir3.1 fc11.2	

1192

Table 3 QTL-allelic effect (Δ %) predicted for the NILs based on BC₃ data compared with observed performance of the NILs. Grouped data are QTL/factors statistics from BC3 mapping (first row, in italics) and corresponding NIL/s statistics (subsequent rows). If QTL/factor did not reach the threshold significance in BC₃ only the trait affected is described (Bernacchi et al. 1997b). Statistics for QTL are Δ % = percent phenotypic change associated with the *L. hirsutum* (H) or *L. pimpinellifolium* (PM) allele; P = significance of the association (Bernacchi et al. 1997b). Statistics for NIL evaluation are Δ % = percent phenotypic difference relative to *L. esculentum* control E6203; P = significance of contrast NIL-E6203. Markers, in *italics*, are RFLP loci associated with QTL/factor. Introgression indicates the segments of H DNA contained in the NIL. IS = Israel; SP = Spain; CAP = California, Woodland; CAH = California, Stockton and JP = Japan. ns = not significant (P > 0.1). na = not available in a given location. Avg. Δ % = average phenotypic effect associated to the H or PM allele, considering only deviations at $P \le 0.1$ irrespective of the direction of the difference. none sig = none of the contrasts were significant at $P \le 0.1$. The NILs selected for best performance in the case of QTL/factors represented by more than one NIL are indicated in bold

Trait, $QTL (BC_3)$	Donor	Marker	IS		SP		CAP		CAH		JP		Avg. $\Delta\%$
NIL		Introgression	Δ %	Р	Δ %	Р	Δ%	Р	$\Delta\%$	Р	$\Delta\%$	Р	
Soluble solids TA523 TA1257	Н	<i>TG260/CT267</i> TG260-CT190 CT190	6 9 2	0.03 0.01 ns	5 - 3 - 4	0.07 ns ns	$-{3 \atop 4}^{7}$	0.07 ns ns	6 1	0.06 ns	7 4	0.08 ns	6.0 7.5 ns
Soluble solids, ssc3.2 TA1276	Н	<i>TG417/CT243</i> TG417-CT243	11 5	0.0009 ns	$12 \\ -1$	0.0006 ns	5 1	ns ns	8	0.015	5	ns	11.5 8.3
Viscosity (Bostwick) TA1276	Н	<i>TG417</i> TG417-CT243			$-2 \\ 2$	0.013 ns	- 9	0.1	- 11	0.013	- 22	no rep	- 14.6 - 9.9
Total Yield, ytd4.1 TA1133	Н	<i>CD59</i> CD59	16 - 12	0.03 0.1	20 - 10	0.078 ns	9 20	<i>0.1</i> 0.1			28	0.1	<i>14.8</i> 12.0
<i>Red yield</i> TA1133	Н	<i>CD59</i> CD59	<i>15.4</i> - 14.2	0.09 0.02	26 3.5	0.05 ns	2 20	ns 0.1	19.1	0.04	48.2	0.03	20.7 18.2
Brix red yield TA1133	Н	<i>CD59</i> CD59	17 - 20	<i>0.03</i> 0.005	15 - 5	<i>ns</i> ns	$-5 \\ 13$	<i>ns</i> ns	11	ns	42	0.04	<i>17.2</i> 10.7
Red yield TA517 TA1284	Н Н	<i>TG163</i> TG305-CT50-TG163 CT50-TG163	-l - 14 - 14	<i>ns</i> 0.03 ns	-12 15 -19	ns 0.1 0.08	33 5 - 32	0.006 ns 0.02	$-12 \\ -2$	ns ns	1	ns	$32.5 \\ 0.5 \\ -25.2$
Soluble solids TA517 TA1284	Н	<i>TG163</i> TG305-CT50-TG163 CT50-TG163	3 9 13	ns 0.01 0.001	10 10 9	$0.004 \\ 0.008 \\ 0.01$	5 6.31 0.14	<i>ns</i> 0.014 ns	22 5.5	<0.0001 0.1	13.8	0.002	9.6 12.2 9.2
Brix red yield, bry4.1 TA517 TA1284	Н	<i>TG163</i> TG305-CT50-TG163 CT50-TG163	3 - 7 11	<i>ns</i> ns 0.1	6 267 11	<i>ns</i> 0.01 ns	41 13 - 32	< 0.000 ns 0.02	1 8 4.	ns ns	16	ns	41.0 26.5 - 10.2
<i>Fruit color, fc4.2</i> TA517 TA1284	Н	<i>TG163</i> TG305-CT50-TG163 CT50-TG163	46 7 _ 9	0.0003 ns ns	14 0 0	0.06 ns ns	-3 23 -2	ns 0.05 ns	$-14 \\ 7$	0.1 ns	33	0.03	29.7 14.0 ns
Viscosity TA517 TA1284	Н	<i>CT50</i> TG305-CT50-TG163 CT50-TG163			12 - 4 - 13	0.04 ns 0.02	-3 - 13	ns 0.02	- 15 - 6	0.001 ns			<i>12.1</i> - 15.3 - 12.8
Red yield TA1138	Н	TG574 TG264-TG574-CT50	14 - 3	0.08 ns	3 3	ns ns	37 16	0.007 ns					26.5 ns
Brix red yield TA1138	Н	<i>TG574</i> TG264-TG574-CT50	12 - 1	0.08 ns	9 7	ns ns	<i>34</i> 24	0.01 0.08	12	0.1	13	ns	22.7 18.2

T		A 1 1
1 a n	le s	Continued
1 40		Continued

Trait, $QTL(BC_3)$	Donor	Marker	IS		SP		CAP		САН		JP		Avg. $\Delta\%$
NIL		Introgression	Δ %	Р	$\Delta\%$	Р	$\Delta\%$	Р	$\Delta\%$	Р	$\Delta\%$	Р	
Firmness TA1138	Н	<i>TG574</i> TG264-TG574-CT50	- 9 17	ns 0.06	17 4	0.01 ns	13 2	<i>ns</i> ns	34	0.04	25	0.1	17.0 25.3
<i>Fruit color, fc5.1</i> TA1116 TA1291 TA1292 TA1293	Н	<i>TG441</i> TG441-CT167-CD64 TG441 TG441 CD64	42 7 7	0.01 ns	15 17 0 6 17	0.06 0.04 ns ns 0.04	2 - 2 18	ns ns 0.1	-1 - 1 - 1 - 1	ns ns	8	ns	28.4 16.7 ns ns 17.4
Viscosity TA1116 TA1291 TA1292 TA1293	Н	<i>TG441</i> TG441-CT167-CD64 TG441 TG441 CD64			-12 -3 6 -7 -11	0.05 ns ns ns 0.053	5 1	ns ns	$-23 \\ 15 \\ 5$	< 0.000 0.001 ns	1		- 11.8 - 22.5 14.7 ns - 10.6
Soluble solids, ssc5.1 TA1118 TA1117 TA1297	Н	<i>TG69</i> TG69-CT138 TG69-CT138 CT138	12 3 1 2	0.01 ns ns ns		0.08 ns ns ns	13 - 2 - 5 - 5	0.02 ns 0.03 0.03	$-\frac{4}{3}$	ns ns ns		ns ns ns	11.0 ns - 5.4 - 5.4
<i>Fruit color</i> TA1118 TA1117 TA1297	Н	<i>TG60/CT138</i> TG69-CT138 TG69-CT138 CT138	31 - 4 7 - 9	0.06 ns ns ns	5. 0 6 - 11	0.01 ns ns 0.1	6 13 18 3	0.052 ns 0.1 ns	$11 \\ 7 \\ -10$	ns ns ns	25 8 8	0.1 ns ns	14.0 25.0 18.0 - 11.1
Fruit color, fc11.2 TA1347	Н	<i>TG393</i> TG393	<i>46</i> 14	<i>0.0002</i> 0.02	$-\frac{3}{3}$	ns ns	2 0	<i>ns</i> ns	- 20	0.02	8	ns	46.2 - 2.6
Soluble solids ssc3.1/3.2 TA524 94T872-13 94T868-24	РМ	<i>TG129/CD51/TG388</i> TG246-TG129-CD51-TG388 TG246-TG129-CD51 TG388	$-\frac{7}{2}$ 3 2	0.04 ns ns ns	7 - 4 - 11 - 6	0.0007 ns 0.03 0.1	7 - 8 na - 5	< 0.000 0.002 na 0.04	$\begin{array}{c} -4 \\ -3 \\ -3 \end{array}$	ns ns ns		ns ns ns	7.1 - 7.9 - 10.8 - 5.4
Brix red yield, byr3.1 TA524 94T872-13 94T868-24	РМ	<i>CD51-TG388</i> TG246-TG129-CD51-TG388 TG246-TG129-CD51 TG388	5 9 25 7	ns 0.1 0.001 ns	18 2 -15 -3	0.001 ns ns ns	- 8 - 19	ns 0.1	9 0 6	ns ns ns	59 - 7 8	0.005 ns ns	18.2 34.1 24.7 - 19.4
Firmness, fir3.1 TA515	PM	<i>TG525</i> TG114-TG525-CT141-TG66	40 22	<i>0.0001</i> 0.01	4	ns	2	ns	34	ns	- 17	ns	40.0 22.2
Soluble solids TA514	РМ	CT101	$- \frac{1}{2.1}$	ns ns	<i>1</i> 11	ns 0.005	5.2	0.04	- 7	0.04	5	ns	5.2 1.70
<i>Viscosity, vis9.1</i> TA534 94T873-30	РМ	<i>TG421</i> TG421 TG421-CT74-TG551			$-13 \\ -8 \\ -3$	0.0003 0.1 ns	- 7 - 5	0.1 ns	$-3 \\ -5$	ns ns	- 36 - 28	no rep no rep	- 13 - 7.5 ns
Fruit color TA516	РМ	TG393-I2-TG36-TG546	11 18	ns ns	23 25	0.009 0.002	<i>1</i> 17	ns 0.1	- 15	0.07	25	0.07	2.3 12.9

Table 5 QTL/factors classified according to the number of locations of BC₃ detection and the number of locations where corresponding NIL showed the predicted effect (NIL Δ %) (P \leq 0.1). Names of QTL/factors are described in Table 1

Number Loc.	significant NIL	$\Delta\%$ in predicted direction	ection		
Number Loc. QTL/factor detection in BC ₃	0	1	2	3	5
1		fir3.1 SSC-CT101 BOS-TG441 fc11.2 BYR-CD59 byr4.1	<i>byr3.1</i> YDR-TG163 BOS-CT50 BOS-417 <i>vis9.1</i>	FIR-TG574 FC-TG393	SSC-TG163
2	YDR-TG574	fc5.1 ssc3.2	BYR-TG574 fc4.2	YDR CD59	
3	ssc3.1 ssc5.1	FC-TG60/CT138	ydt4.1	SSC-TG260/CT26	7

Table 6 Percent phenotypic differences between NILs and the *L. esculentum* control for traits other than those predicted by QTL analysis results. $\Delta\%$ = percent phenotypic difference. Only the best performing NIL for each target are considered. IS = Israel; SP = Spain; CAP = California, Woodland; CAH = California, Stockton and JP = Japan. FC = fruit color; BYR = brix × red yield; YDR = red yield; FIR = fruit firmness; AFW = average fruit weight; SSC = soluble solids; BOS = viscosity Bostwick; YDT = total yield. Loc = location. The original association

between the introgressed markers and any given trait are given under BC₃ association (Bernacchi et al. 1997b) as follows: if a QTL was detected with significance in the BC₃, its name is given as well as the estimated phenotypic effect associated with the wild allele; if an association failing to reach QTL significance was detected, the location in which it was detected is given in brackets, preceeded by a negative sign (-) if the H or PM allele was associated with inferior performance or a positive sign (+) if H or PM allele improved the trait

NIL	Trait	NIL dev	BC ₃ mapping							
		Loc	$\Delta\%$	Loc	$\Delta\%$	Loc	Δ %	Loc	Δ %	
TA253	FC BYR YDR FIR AFW	IS CAH JP CAH CAH	+ 15 + 22 + 38 + 46 - 10	JP CAP	+48	SP	-22			fc1.3 - 33%, (-CAP) (-CAP) (-IS, -CAP) (+CAP)
TA1276	FC FIR YDR AFW	CAP CAH IS CAH	-4 -23 -11 -15	JP SP CAP	$-10 \\ -12 \\ -12$	IS	-15	SP	+11	(+CAP) (+SP, +CAP) (-SP) (-IS, -SP, -CAP) (-IS, -SP)
TA1133	BOS SSC AFW	CAH CAH CAH	- 9 - 7 -14	CAP CAP IS		SP IS SP	$-20 \\ -6 \\ -18$	SP	-7	(-CAP)
TA517	pH YDT FIR AFW	SP IS SP CAH	+2 -16 -12 -25	JP JP CAP	+1.5 -23 -21	IS	-21	SP	-20	(-SP, -CAP) (-SP) (-SP)
TA1284	YDT AFW	CAP CAH	$-31 \\ -15$	IS	-15	SP	- 16			(-SP)
TA1138	BOS SSC AFW FC	CAH CAH CAH SP	+12 + 7 - 12 - 8	CAP CAP CAP	+13 + 6 - 12	JP	+21			$(+SP)^{a}$ $(+SP)^{a}$ (-SP, -CAP)
TA1116	SSC FIR AFW	CAH CAH CAH	+9 + 53 - 20	IS IS SP	+ 8 + 22 - 21	JP	+25			
TA1117	FIR BYR	JP IS	$-23 \\ -20$	SP SP	$-17 \\ -20$					$fir5.1 - 32\% (-SP)^a$ (-IS, -SP)

Table 6 Continued

NIL	Trait	NIL dev	NIL deviations from E6203 at $P < 0.1$									
		Loc	$\Delta\%$	Loc	$\Delta\%$	Loc	Δ %	Loc	Δ %			
TA1347	FIR	CAH	+27									
	BYR	JP	+53	SP	-24							
	YDR	JP	+51									
	BO2	CAR	-15	SD	7	IS	1.5			(-SP)		
	FC	SC = CAP = -7 = SP = -7 = 1S + 5			$(\pm IS)$							
	AFW	CAH	-21 - 11							(-IS, -SP)		
TA524	BOS	CAH	+10							(-SP)		
	YDR	JP	+60	IS	+11					(+SP)		
	FIR	JP	+33									
	AFW	CAH	-15	SP	-16					(-CAP, -IS, -SP)		
TA516	BYR	SP	-24							(+IS)		
	SSC	CAP	- 5							(+CAP, +SP)		
	AFW	CAH	-8	CAP	-25	IS	-16	SP	+12	(-CAP, -IS, -SP)		
TA514	BYR	IS	+18									
	FC	IS	+36							(+SP)		
	AFW	JP	+34									
	FIR	SP	-12	JP	-33							
TA534	YDR	JP	+30	SP	+29					$(+ IS)^a$		
	BYR	SP	+18									
	FIR	CAH	+34	SP	+13							
	SSC	SP	- 8							$(-SP)^{a}$		
	FC	CAH	-22	CAP	-16	SP	-11			(-SP)		
TA515	FIR	CAH	+53	CAP	-23					(+IS)		
	AFW	SP	+20	CAH	-13	CAP	-32			(-IS)		

^a A QTL or a subthreshold association was detected for the RFLP marker adjacent to introgressed segment